Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 24(1): 162, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632534

RESUMO

The incidence of dementia is rising, with neuronal cell death from oxidative stress and apoptosis recognized as a significant contributor to its development. However, effective strategies to combat this condition are lacking, necessitating further investigation. This study aimed to assess the potential of an anthocyanin-rich extract from Zea mays L. var. ceratina (AZC) in alleviating neuronal cell death.Neurotoxicity was induced in SH-SY5Y cells using hydrogen peroxide (H2O2) at a concentration of 200 µM. Cells were pretreated with varying doses (31.25 and 62.5 µg/mL) of AZC. Cell viability was assessed using the MTT assay, and molecular mechanisms including reactive oxygen species (ROS) levels, antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)), malondialdehyde (MDA) levels for oxidative stress, and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), cAMP response element-binding protein (CREB), and apoptotic factors (B-cell lymphoma 2 (Bcl-2), caspase 3) were explored.Results showed that AZC significantly improved cell viability, reduced ROS production and MDA levels, and downregulated caspase 3 expression. It enhanced CAT, SOD, and GSH-Px activities, activated ERK1/2 and CREB, and upregulated Bcl-2 expression. These findings support the neuroprotective effects of AZC, suggesting it activates ERK1/2, leading to CREB activation and subsequent upregulation of Bcl-2 expression while suppressing caspase 3. AZC may mitigate neuronal cell death by reducing ROS levels through enhanced scavenging enzyme activities.In conclusion, this study underscores the potential of AZC as a neuroprotective agent against neuronal cell death. However, further investigations including toxicity assessments, in vivo studies, and clinical trials are necessary to validate its benefits in neuroprotection.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Animais , Abelhas , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Antocianinas , Zea mays/metabolismo , Linhagem Celular Tumoral , Morte Celular , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo
2.
3 Biotech ; 14(4): 115, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38524239

RESUMO

The dopaminergic neurons are responsible for the release of dopamine. Several diseases that affect motor function, including Parkinson's disease (PD), are rooted in inadequate dopamine (DA) neurotransmission. The study's goal was to create a quick way to make dopaminergic neuron-like cells from human fibroblasts (hNF) using only two small molecules: hedgehog pathway inhibitor 1 (HPI-1) and neurodazine (NZ). Two small compounds have been shown to induce the transdifferentiation of hNF cells into dopaminergic neuron-like cells. After 10 days of treatment, hNF cells had a big drop in fibroblastic markers (Col1A1, KRT18, and Elastin) and a rise in neuron marker genes (TUJ1, PAX6, and SOX1). Different proteins and factors related to dopaminergic neurons (TH, TUJ1, and dopamine) were significantly increased in cells that behave like dopaminergic neurons after treatment. A study of the autophagy signaling pathway showed that apoptotic genes were downregulated while autophagy genes (LC3, ATG5, and ATG12) were significantly upregulated. Our results showed that treating hNF cells with both HPI-1 and NZ together can quickly change them into mature neurons that have dopaminergic activity. However, the current understanding of the underlying mechanisms involved in nerve guidance remains unstable and complex. Ongoing research in this field must continue to advance for a more in-depth understanding. This is crucial for the safe and highly effective clinical application of the knowledge gained to promote neural regeneration in different neurological diseases.

3.
Food Chem X ; 21: 101228, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38389579

RESUMO

Changes in structural characteristics and antioxidant activity of tilapia hydrolysate glycated with glucose, fructose, or xylose at 90 °C for 12 h, and following in vitro gastrointestinal (GI) digestion were investigated. Fourier-transformed infrared (FTIR) band between 1,800 and 1,400 cm-1 confirmed the structural modifications of hydrolysate under glycations. Glycation drastically increased ATBS·+ and ONOO- scavenging activities (p < 0.05) as well as ferric-reducing antioxidant power (FRAP). Xylose was the most effective sugar for glycation, yielding the highest chemical antioxidant activities (p < 0.05). However, glycated hydrolysates exhibited lower cellular antioxidant activity (CAA) on HepG2 cell when compared to hydrolysates. The extensive glycation of hydrolysates resulted in lower GI digestibility as confirmed by the FTIR spectra of C[bond, double bond]O, C-N, N-H, C-C, C-O, and C-H stretching vibrations. Glycation of tilapia hydrolysates only improved chemical antioxidant activities, but alleviated CAA, especially upon simulated GI digestion.

4.
Sci Rep ; 14(1): 4436, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396088

RESUMO

The three-dimensional (3D) cell culture system is being employed more frequently to investigate cell engineering and tissue repair due to its close mimicry of in vivo microenvironments. In this study, we developed natural biomaterials, including hyaluronic acid, alginate, and gelatin, to mimic the creation of a 3D human mesenchymal stem cell (hMSC) extracellular environment and selected hydrogels with high proliferation capacity for 3D MSC culture. Human mesenchymal stem cells were encapsulated within hydrogels, and an investigation was conducted into the effects on cell viability and proliferation, stemness properties, and telomere activity compared to the 2D monolayer culture. Hydrogel characterization, cell proliferation, Live/Dead cell viability assay, gene expression, telomere relative length, and MSC stemness-related proteins by immunofluorescence staining were examined. The results showed that 3D alginate-hyaluronic acid (AL-HA) hydrogels increased cell proliferation, and the cells were grown as cellular spheroids within hydrogels and presented a high survival rate of 77.36% during the culture period of 14 days. Furthermore, the 3D alginate-hyaluronic acid (AL-HA) hydrogels increased the expression of stemness-related genes (OCT-4, NANOG, SOX2, and SIRT1), tissue growth and development genes (YAP and TAZ), and cell proliferation gene (Ki67) after culture for 14 days. Moreover, the telomere activity of the 3D MSCs was enhanced, as indicated by the upregulation of the human telomerase reverse transcriptase gene (hTERT) and the relative telomere length (T/S ratio) compared to the 2D monolayer culture. Altogether, these data suggest that the 3D alginate-hyaluronic acid (AL-HA) hydrogels could serve as a promising material for maintaining stem cell properties and might be a suitable carrier for tissue engineering proposals.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Humanos , Hidrogéis/metabolismo , Ácido Hialurônico/metabolismo , Alginatos/metabolismo , Esferoides Celulares
5.
Mol Biotechnol ; 66(1): 44-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37016178

RESUMO

In the epidermal and dermal layers of the skin, diverse cell types are reconstituted during the wound healing process. Delays or failures in wound healing are a major issue in skin therapy because they prevent the normal structure and function of wounded tissue from being restored, resulting in ulceration or other skin abnormalities. Human immortalized keratinocytes (HaCAT) cells are a spontaneously immortalized human keratinocyte cell line capable of secreting many bioactive chemicals (a secretome) that stimulate skin cell proliferation, rejuvenation, and regeneration. In this study, the HaCaT secretome was encapsulated with polyesters such as poly (lactic-co-glycolic acid) (PLGA) and cassava starch in an effort to maximize its potential. According to the estimated mechanism of the HaCaT secretome, all treatments were conducted on immortalized dermal fibroblast cell lines, a model of wound healing. Encapsulation of HaCaT secretome and cassava starch enhanced the effectiveness of cell proliferation, migration, and anti-aging. On the other hand, the levels of reactive oxygen species (ROS) were lowered, activating antioxidants in immortalized dermal fibroblast cells. The HaCaT secretome induced in a dose-dependent manner the expression of antioxidant-associated genes, including SOD, CAT, and GPX. Six cytokines, including CCL2 and MCP-1, influenced immunoregulatory and inflammatory processes in cultured HaCAT cells. HaCaT secretome encapsulated in cassava starch can reduce ROS buildup by boosting antioxidant to stimulate wound healing. Hence, the HaCaT secretome may have a new chance in the cosmetics business to develop components for wound prevention and healing.


Assuntos
Antioxidantes , Secretoma , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cicatrização , Fibroblastos/metabolismo , Amido/metabolismo , Proliferação de Células
6.
J Food Sci ; 89(1): 356-369, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38126113

RESUMO

The use of ultrasonic (US) treatment of egg white prior to enzymatic hydrolysis to produce hydrolysate with antioxidant activity was investigated. The state of egg white (raw vs. cooked form) along with two levels of Alcalase (1% and 10% (w/w) protein) was applied. Hydrolysis and antioxidant activity of hydrolysate increased by US pretreatment at intensity of 41.53 W/cm2 . The hydrolysate prepared from US treatment on raw egg white hydrolyzed by 1% Alcalase (US-R1%) showed the lowest degree of hydrolysis (DH); however, its 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging and ferric reducing antioxidant power activities were the highest. In contrast, the highest cytoprotective effect and intracellular reactive oxygen species scavenging activity were more notable in the hydrolysate prepared from US treatment of boiled egg white hydrolyzed by 10% Alcalase (US-B10%), which also exhibited the highest DH and metal chelation ability. The hydrolysate possessing cellular antioxidant activity (CAA) showed the highest proportion of small molecular weight peptides (<200 Da). Fourier-transform infrared spectroscopy revealed an increase of N- and C-terminal ends at 1500 and 1400 cm-1 , respectively, in concomitant with a decrease of amide I. Principal component analysis showed clear differentiation of spectra from different levels of enzyme according to their DH, C-terminal ends, and antioxidant activity. Our findings suggested that cooked egg white followed by US pretreatment was beneficial to produce hydrolysate containing high CAA.


Assuntos
Antioxidantes , Clara de Ovo , Antioxidantes/química , Peptídeos/química , Subtilisinas/química , Hidrólise , Hidrolisados de Proteína/química
7.
Biol Pharm Bull ; 46(9): 1260-1268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37661405

RESUMO

Cancer treatment with natural killer (NK) cell immunotherapy is promising. NK cells can recognize and kill cancer cells without sensitization, making them a potential cancer treatment alternative. To improve clinical efficacy and safety, more research is needed. Enhancing NK cell function improves therapeutic efficacy. Due to its potent apoptosis induction, Cordycepin, a bioactive compound from Cordyceps spp., inhibits cancer cell growth. Cordycepin has immunoregulatory properties, making it a promising candidate for combination therapy with NK cell-based immunotherapy. Cordycepin may enhance NK cell function and have clinical applications, but more research is needed. In this study, cordycepin treatment of NK-92 MI cells increased THP-1 and U-251 cell cytotoxicity. Cordycepin also significantly increased the mRNA expression of cytokine-encoding genes, including tumour necrosis factor (TNF), interferon gamma (IFNG), and interleukin 2 (IL2). NK-92 MI cells notably secreted more IFNG and granzyme B. Cordycepin also decreased CD27 and increased CD11b, CD16, and NKG2D in NK-92 MI cells, which improved its anti-cancer ability. In conclusion, cordycepin could enhance NK cell cytotoxicity against cancerous cells for the first time, supporting its use as an alternative immunoactivity agent against cancer cells. Further studies are needed to investigate its efficacy and safety in clinical settings.


Assuntos
Interferon gama , Células Matadoras Naturais , Humanos , Desoxiadenosinas/farmacologia , Desoxiadenosinas/uso terapêutico , Fator de Necrose Tumoral alfa
8.
J Asian Nat Prod Res ; : 1-21, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735930

RESUMO

Alzheimer's causes cognitive dysfunction. This study investigated the neuro-promoting effects of cordycepin on amyloid-beta precursor protein (APP) synthesis in human neuroblastoma SH-SY5Y cells. Cordycepin was found to boost SH-SY5Y cell proliferation and decreased AD pathology. APP, PS1, and PS2 were downregulated whereas ADAM10 and SIRT1 were upregulated by cordycepin. Cordycepin also reduced APP secretion in a dose-dependent manner. Cordycepin alleviated oxidative stress by the upregulation of GPX and SOD, as well as autophagy genes (LC3, ATG5, and ATG12). Cordycepin activity was also found to be SIRT1-dependent. Therefore, cordycepin may relieve the neuronal degeneration caused by APP overproduction, and oxidative stress.

9.
Lett Appl Microbiol ; 76(5)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37113039

RESUMO

Cordyceps militaris is a medicinal mushroom in Asia in the 21st century, which cordycepin is a significant bioactive compound. This study, investigated the effect of culture conditions and vegetable seed extract powder as a supplementary source of animal-free nitrogen on the production of cordycepin by C. militaris in liquid surface culture. The highest cordycepin production was observed under soybean extract powder (SBEP) conditions, and 80 g L-1 of SBEP supplementation increased cordycepin production to 2.52 g L-1, which was greater than the control (peptone). Quantitative polymerase chain reaction was used to examine the transcription levels, and the results showed that supplementing with SBEP 80 g L-1 significantly increased the expression of genes associated with the carbon metabolic pathway, amino acid metabolism, and two key genes involved in the cordycepin biosynthesis (cns1 and NT5E) compared to peptone-supplemented culture. Under optimal culture conditions, the model predicted a maximum response of cordycepin production of 2.64 g L-1 at a working volume of 147.5 ml, an inoculum size of 8.8% v/v, and a cultivation time of 40.0 days. This optimized culture condition could be used to increase cordycepin production in large-scale bioreactors. Additional research can be conducted to assess the economic viability of this process.


Assuntos
Cordyceps , Cordyceps/metabolismo , Nitrogênio/metabolismo , Peptonas , Pós/metabolismo , Reatores Biológicos
10.
BMC Complement Med Ther ; 23(1): 117, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37055744

RESUMO

The prevalence of dementia is increasing, and most of the causes are related to neuronal cell death. Unfortunately, no effective strategy is available for protecting against this condition. Based on the use of the synergistic concept together with the positive modulation effect of both mulberry fruit and mulberry leaf on dementia, we hypothesized that the combined extract of mulberry fruit and mulberry leaf (MFML) should mitigate neuronal cell death. Neuronal cell damage was induced in SH-SY5Y cells by exposure to hydrogen peroxide at a dose of 200 µM. SH-SY5Y cells were given MFML at doses of 62.5 and 125 µg/mL before induced cytotoxicity. Then, the cell viability was determined via MTT assay, and the possible underlying mechanisms were investigated via the alterations of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), nuclear factor-κB (NF-κB), and tumor necrosis factor-alpha (TNF-α), together with apoptotic factors including (B-cell lymphoma 2) BCL2, Casapase-3 and Caspase-9. The results showed that MFML significantly enhanced cell viability. It also significantly decreased MDA level, NF-κB, TNF-α, Casapase-3, Caspase-9, but increased SOD, GSH-Px and BCL2. These data demonstrated the neuroprotective effect of MFML. The possible underlying mechanisms might occur partly via the improvement of the inappropriate apoptotic mechanisms via BCL2, Casapase-3 and Caspase-9 together with the decrease in neurodegeneration induced by the reduction of inflammation and oxidative stress. In conclusion, MFML is a potential neuroprotectant candidate against neuronal cell injury. However, toxicity, animal studies, and clinical trials are essential to confirm these benefits.


Assuntos
Demência , Morus , Neuroblastoma , Fármacos Neuroprotetores , Animais , Humanos , Fármacos Neuroprotetores/farmacologia , Caspase 9/metabolismo , Apoptose , Peróxido de Hidrogênio/toxicidade , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Frutas , Linhagem Celular Tumoral , Caspase 3/metabolismo , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo , Folhas de Planta
11.
J Microencapsul ; 40(5): 303-317, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36999274

RESUMO

Oxidative stress from reactive oxygen species is the main cause of skin ageing. Cordycepin, a bioactive compound of Cordyceps militaris, contains antioxidant activity. This study examined extracellular matrix, antioxidant effect, autophagy activity, and skin regeneration in human dermal fibroblasts (HDFs) under normal and oxidative stress conditions. Slow disintegration was used to create nano-encapsulated cordyceps extract. HDFs were cultured and treated with 1 M cordycepin, 1 M medium, 0.1 M cordyceps medium loaded nanoparticles (CMP), or 1 mM H2O2. HDFs' senescent phenotypes were assessed, including cell proliferation, ROS scavenging, collagen and elastin synthesis, antioxidant activity, and wound healing. CMP size averaged 184.5 ± 95.2 nm increased cell proliferation and reduced H2O2-induced ROS. Thus, HDFs treated for 48 h increased skin regeneration activity 2.76-fold by expressing extracellular matrix and rescuing H2O2-induced damaged cells. It was significant that this CMP inhibited H2O2-induced oxidative stress and induced autophagy to regenerate HDFs. The developed CMP could be used in cosmetics.


Assuntos
Antioxidantes , Cordyceps , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Autofagia , Colágeno
12.
In Vivo ; 37(2): 574-590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881050

RESUMO

BACKGROUND/AIM: Skin regeneration is the intrinsic ability to repair damaged skin tissues to regaining skin well-being. Processes of wound healing, a major part of skin regeneration, involve various types of cells, including keratinocytes and dermal fibroblasts, through their autocrine/paracrine signals. The releasable factors from keratinocytes were reported to influence dermal fibroblasts behavior during wound-healing processes. Here, we developed a strategy to modulate cytokine components and improve the secretome quality of HaCaT cells, a nontumorigenic immortalized keratinocyte cell line, via the treatment of cordycepin, and designated as cordycepin-induced HaCaT secretome (CHS). MATERIALS AND METHODS: The bioactivities of CHS were investigated in vitro on human dermal fibroblasts (HDF). The effects of CHS on HDF proliferation, reactive oxygen species-scavenging, cell migration, extracellular matrix production and autophagy activation were investigated by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide cell viability assay, dichloro-dihydro-fluorescein diacetate, the wound-healing assay, reverse transcription polymerase chain reaction and immunofluorescent microscopy. Finally, Proteome Profiler™ Array was used to determine the composition of the secretome. RESULTS: CHS induced fibroblast proliferation/migration, reactive oxygen species-scavenging property, regulation of extracellular matrix synthesis, and autophagy activation. Such enhanced bioactivities of CHS were related to the increase of some key cytokines, including C-X-C motif chemokine ligand 1, interleukin 1 receptor A, interleukin 8, macrophage migration-inhibitory factor, and serpin family E member 1. CONCLUSION: These findings highlight the implications of cordycepin alteration of the cytokine profile of the HaCaT secretome, which represents a novel biosubstance for the development of wound healing and skin regeneration products.


Assuntos
Queratinócitos , Secretoma , Humanos , Espécies Reativas de Oxigênio , Citocinas , Regeneração
13.
In Vivo ; 37(2): 596-610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881089

RESUMO

BACKGROUND/AIM: Mesenchymal stem cells (MSCs) have been employed for therapeutic applications of various degenerative diseases. However, the major concern is MSC aging during the in vitro cultivation. Thus, the approach to delay MSC aging was examined in this research by focusing on the expression of Sirtuin 1 (SIRT1), a key anti-aging marker. MATERIALS AND METHODS: Cordycepin, a bioactive compound derived from Cordyceps militaris, was used to up-regulate SIRT1 and maintain stemness of MSCs. Upon treatment with cordycepin, MSCs were investigated for cell viability, doubling time, key gene/protein expression, galactosidase-associated senescence assay, relative telomere length, and telomerase expression. RESULTS: Cordycepin significantly increased the expression of SIRT1 in MSCs by activating the adenosine monophosphate activated protein kinase (AMPK)-SIRT1 signalling pathway. Moreover, cordycepin maintained the stemness of MSCs by deacetylating SRY-box transcription factor 2 (SOX2) via SIRT1, and cordycepin delayed cellular senescence and aging of MSCs by enhancing autophagy, inhibiting the activity of senescence-associated-galactosidase, maintaining proliferation rate, and increasing telomere activity. CONCLUSION: Cordycepin could be used to increase SIRT1 expression in MSCs for anti-aging applications.


Assuntos
Células-Tronco Mesenquimais , Sirtuína 1 , Humanos , Sirtuína 1/genética , Desoxiadenosinas/farmacologia , Galactosidases
14.
Cell Mol Bioeng ; 16(1): 81-93, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36660588

RESUMO

Introduction: Neurological diseases, including Alzheimer's, Parkinson's diseases, and brain cancers, are reportedly caused by genetic aberration and cellular malfunction. Herbs with bioactive compounds that have anti-oxidant effects such as cordyceps and turmeric, are of interest to clinical applications due to their minimal adverse effects. The aim of study is to develop the nanoencapsulated cordyceps and turmeric extracts and investigate their capability to enhance the biological activity and improve neuronal function. Methods: Human neuroblastoma SH-SY5Y cells were utilized as a neuronal model to investigate the properties of nanoencapsulated cordyceps or turmeric extracts, called CMP and TEP, respectively. SH-SY5Y cells were treated with either CMP or TEP and examined the biological consequences, including neuronal maturation and neuronal function. Results: The results showed that both CMP and TEP improved cellular uptake efficiency within 6 h by 2.3 and 2.8 times, respectively. Besides, they were able to inhibit cellular proliferation of SH-SY5Y cells up to 153- and 218-fold changes, and increase the expression of mature neuronal markers (TUJ1, PAX6, and NESTIN). Upon the treatment of CMP and TEP, the expression of dopaminergic-specific genes (LMX1B, FOXA2, EN1, and NURR1), and the secretion level of dopamine were significantly improved up to 3.3-fold and 3.0-fold, respectively, while the expression of Alzheimer genes (PSEN1, PSEN2, and APP), and the secretion of amyloid precursor protein were significantly reduced by 32-fold and 108-fold, respectively. Importantly, the autophagy activity was upregulated by CMP and TEP at 6.3- and 5.5-fold changes, respectively. Conclusions: This finding suggested that the nanoencapsulated cordyceps and turmeric extracts accelerated neuronal maturation and alleviated neuronal pathology in human neural cells. This paves the way for nanotechnology-driven drug delivery systems that could potentially be used as an alternative medicine in the future for neurological diseases.

15.
ACS Appl Bio Mater ; 6(2): 603-614, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36621814

RESUMO

Typically, nanomedicine was prepared using a nanocarrier to load cargo for specific purposes. In this work, a carrier-free nanosystem for imaging and photodynamic (PDT)/chemo combination therapy was developed using simple self-assembly of a dye and a chemotherapeutic agent. The resulting nanoparticles (I2-IR783/MTX@NPs) exhibited a spherical morphology with a size of 240.6 ± 2.5 nm. I2-IR783/MTX@NPs had substantial internalization in 4T1 murine breast cancer cells and showed a synergistic anticancer effect after NIR light irradiation. Additionally, the 3D tumor model exhibits the same phototoxicity of nanoparticles as a 2D cell culture. The PDT efficiency of the nanosystem in the physiological environment was confirmed by the detection of intracellular reactive oxygen species as well as the live/dead viability/cytotoxicity assay following NIR light exposure. In addition, optical coherence tomography (OCT) was used as an alternative tool to monitor the response after treatment. Therefore, I2-IR783/MTX@NPs show great potential use in theranostic application for breast cancer PDT-chemotherapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Fotoquimioterapia , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Metotrexato , Fotoquimioterapia/métodos , Terapia Combinada , Nanopartículas/uso terapêutico
16.
J Dent Sci ; 17(4): 1677-1688, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36299321

RESUMO

Background/purpose: Cordycepin has been proposed anti-cancer effects, however, it is unclear whether and how cordycepin affects oral squamous carcinoma cell (OSCC) migration and invasion. This study aimed to investigate the effect of cordycepin on migration and invasion of OSCC (HSC-4 cells), and its underlying mechanism. Materials and methods: Cell viability was measured with MTT assay. Migrative and invasive abilities were determined by scratch wound healing, agarose spot and transwell invasion assays, respectively. Monodasylcadaverine (MDC) staining, immunofluorescence staining of LC3 and RT-PCR evaluated the gene expression of LC3 and p62 were applied to investigate autophagy. MMP2 and MMP9 gene expression and activity were examined by RT-PCR and gelatin zymography. Expression of caspase 3, cleaved caspase 3, FAK, p-FAK, Akt and p-Akt was determined by Western blot. Results: Cordycepin significantly inhibited HSC-4 cell migration and invasion in a concentration-dependent manner. Cordycepin treatment caused an induction of autophagy, as evidenced by increased MDC fluorescence intensity and MDC positive cells, and upregulated expression level of LC3 gene. In addition, inhibition of autophagy by chloroquine (CQ) significantly abolished cordycepin-inhibited HSC-4 cell migration and invasion, demonstrating that cordycepin-inhibited migration and invasion was mediated by autophagy. Mechanistic studies showed that cordycepin significantly suppressed FAK and Akt phosphorylation, and MMP2 and MMP9 activities. Conversely, CQ pre-incubation significantly restored its expression and activity in cordycepin-treated cells. Conclusion: Cordycepin induces autophagy to suppress FAK and Akt phosphorylation, and MMP2 and MMP9 activity, which responsible for the attenuation of HSC-4 cell migration and invasion.

17.
Bioorg Chem ; 122: 105758, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344895

RESUMO

Near-IR fluorescent sensitizers based on heptamethine cyanine (Cy820 and Cy820-IMC) were synthesized and their abilities to target and abolish tumor cells via photodynamic therapy (PDT) were explored. Some hepthamethine cyanine dyes can be transported into cancer cells via the organic anion transporting polypeptides (OATPs). In this study, we aimed to enhance the target ability of the sensitizer by conjugation Cy820 with indomethacin, a non-steroidal anti-inflammatory drug (NSAID), to obtain Cy820-IMC that aimed to target cyclooxygenase-2 (COX-2) which overexpresses in cancer cells. The results showed that Cy820-IMC internalized the cancer cells faster than Cy820 which was verified to be related to COX-2 level and OATPs. Based on PDT experiments, Cy820-IMC has higher photocytotoxicity index than Cy820, >7.13 and 4.90, respectively, implying that Cy820-IMC showed better PDT property than Cy820. However, Cy820 exhibits slightly higher normal-to-cancer cell toxicity ratio than Cy820-IMC, 6.58 and 3.63, respectively. Overall, Cy820-IMC has superior cancer targetability and enhanced photocytoxicity. These characteristics can be further improved towards clinically approved sensitizers for PDT.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Indometacina/farmacologia , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
18.
Biotechnol Lett ; 44(4): 581-593, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35262812

RESUMO

Cordycepin (3'-deoxyadenosine) is a nucleoside analogue and biosynthesised by Cordyceps militaris, an entomopathogenic fungus. In this study, an epigenetic modifier was applied to static liquid cultures to enhance cordycepin production. C. militaris was cultured in a static liquid culture, and valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, was supplemented in order to modifying the epigenetic status. Gene regulatory network was explored to understand the molecular mechanisms underlying cordycepin production. 50 micromolar of VPA enhanced cordycepin production by 41.187% via the upregulation of 5'-nucleotidase, adenylate kinase, phosphorybosyltransferase, Cns1, Cns2, Cnsa3, and Cns4 of C. militaris for at least 2 days after VPA treatment. The maximum production of cordycepin was 2,835.32 ± 34.35 mg/L in 400 mL-working volume. A scaled-up culture was established with a working volume of 10 L, which led to the slight decrease of cordycepin production. This might due to multifactorial effects, for instance limited aeration and an uneven dispersion of nutrients in the culture system. This scaled-up culture was still needed further optimization. The modification of epigenetic status by VPA significantly enhanced cordycepin production by altering key gene regulatory network of C. militaris. The strategy established in this study might be applicable to other microorganism culture in order to improving the production of bioactive compounds. This work aimed to enhance the production of cordycepin by modifying the epigenetic status of C. militaris, in which subsequently altered gene regulatory network of cordycepin biosynthesis pathway. The weekly supplementation of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, significantly improve cordycepin production over 40%, compared to the untreated control, and the gene regulatory network of C. militaris was also adapted.


Assuntos
Cordyceps , Cordyceps/genética , Cordyceps/metabolismo , Desoxiadenosinas , Epigênese Genética , Histona Desacetilases/metabolismo , Ácido Valproico/metabolismo , Ácido Valproico/farmacologia
19.
Sci Rep ; 12(1): 4173, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264603

RESUMO

To improve the potency of Heptamethine cyanines (Hcyanines) in cancer research, we designed and synthesized two novel Hcyanines based theranostic probes, IR794-Morph and IR794-Morph-Mpip, to enhance cancer cell internalization and targeting. In acidic conditions that resemble to tumour environment, both IR794 derivatives exhibited broad NIR absorption band (704‒794 nm) and fluorescence emission (798‒828 nm) that is suitable for deep seated tumour imaging. Moreover, in vitro study revealed that IR794-Morph-Mpip exhibited better cancer targetability towards various cancer cell lines under physiological and slightly acidic conditions compared to normal cells. IR794-Morph-Mpip was fast internalized into the cancer cells within the first 5 min and mostly localized in lysosomes and mitochondria. In addition, the internalized signal was brighter when the cells were in the hypoxic environment. Furthermore, cellular uptake mechanism of both IR794 dyes, investigated via flow cytometry, revealed that endocytosis through OATPs receptors and clathrin-mediated endocytosis were the main routes. Moreover, IR794-Morph-Mpip, displayed anti-cancer activity towards all tested cancer cell types with IC50 below 7 µM (at 6 h incubation), which is approximately three times lower than that of the normal cells. Therefore, increasing protonated cites in tumour environment of Hcyanines together with incorporating morpholine in the molecule can enhance structure-inherent targeting of these dyes.


Assuntos
Neoplasias , Quinolinas , Fluorescência , Corantes Fluorescentes/química , Humanos , Morfolinas/farmacologia
20.
In Vivo ; 36(1): 140-152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972709

RESUMO

BACKGROUND/AIM: Human dermal fibroblasts (HDFs) are widely used as a skin model in cosmetic and pharmaceutical industry due their advantages for the cosmetic industry and medical aspects. Telomeres are key players in controlling cellular aging, in which telomeres and the telomerase enzyme (hTERT) can maintain proliferative capacity and prolong cellular senescence. The primary aim of the study was to elucidate the underlying mechanisms of hTERT/SV40 immortalization of human dermal fibroblasts. MATERIALS AND METHODS: Transgenic expression of hTERT and SV40 large antigen, as well as co-transfection of both factors was performed and their significance evaluated in terms of HDF immortalization efficiency. RESULTS: The results showed that the immortalized fibroblasts of all conditions can be cultured in over 60 passages and maintain their telomere length. Further, key markers of skin cells, such as COL1A1, KRT18 and ELASTIN, were up-regulated in immortalized cells. In addition, p53 expression was enhanced in all immortalized cells, in accordance with activation of the SIRT1 gene upon transgenic immortalization. The significant role of SIRT1 in fibroblast proliferation was assessed by shRNA-knockdown, and it was found that SIRT1 silencing led to loss of Ki67, a proliferation marker. Moreover, miR-93, a SIRT1-targeted miRNA, also had a significantly reduced expression in the co-transfected immortalized cells, highlighting the linkage of the miRNA and SIRT1 pathway in the immortalization of human dermal fibroblasts. CONCLUSION: This evidence from this study could benefit the efficient development of human skin cell lines for use in the cosmetic industry in the future.


Assuntos
MicroRNAs , Telomerase , Células Cultivadas , Senescência Celular/genética , Fibroblastos/metabolismo , Humanos , MicroRNAs/genética , Sirtuína 1/genética , Telomerase/genética , Telomerase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...